On the Integrability of Polynomial Fields in the Plane by Means of Picard-vessiot Theory
نویسنده
چکیده
We study the integrability of polynomial vector fields using Galois theory of linear differential equations when the associated foliations is reduced to a Riccati type foliation. In particular we obtain integrability results for some families of quadratic vector fields, Liénard equations and equations related with special functions such as Hypergeometric and Heun ones. We also study the Poincaré problem for some of the families.
منابع مشابه
A Functorial Approach for Dynamical Systems over Galois Differential Algebras: Integrability and Picard-vessiot Theory
A categorical theory for the discretization of a large class of dynamical systems with variable coefficients is proposed. It is based on the existence of covariant functors between the Rota category of Galois differential algebras and suitable categories of abstract dynamical systems. The integrable maps obtained share with their continuous counterparts a large class of solutions and, in the li...
متن کاملInfinitesimal Group Schemes as Iterative Differential Galois Groups
This article is concerned with Galois theory for iterative differential fields (ID-fields) in positive characteristic. More precisely, we consider purely inseparable Picard-Vessiot extensions, because these are the ones having an infinitesimal group scheme as iterative differential Galois group. In this article we prove a necessary and sufficient condition to decide whether an infinitesimal gro...
متن کاملGalois Theory for Iterative Connections and Nonreduced Galois Groups
This article presents a theory of modules with iterative connection. This theory is a generalisation of the theory of modules with connection in characteristic zero to modules over rings of arbitrary characteristic. We show that these modules with iterative connection (and also the modules with integrable iterative connection) form a Tannakian category, assuming some nice properties for the und...
متن کاملOn a Discrepancy among Picard-vessiot Theories in Positive Characteristics
There is a serious discrepancy among literature on the Picard-Vessiot theory in positive characteristics (for iterative differential fields). We consider descriptions of Galois correspondence in four approaches to this subject: Okugawa’s result [7], Takeuchi’s Hopf algebraic approach [11] (and [3]), the result of Matzat and van der Put [6], and the model theoretic approach by Pillay [8]. In the...
متن کاملComputing the differential Galois group of a one-parameter family of second order linear differential equations
We develop algorithms to compute the differential Galois group corresponding to a one-parameter family of second order homogeneous ordinary linear differential equations with rational function coefficients. More precisely, we consider equations of the form ∂2Y ∂x2 + r1 ∂Y ∂x + r2Y = 0, where r1,r2 ∈C(x, t) and C is an algebraically closed field of characteristic zero. We work in the setting of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011